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An efficient synthetic strategy for the asymmetric synthesis of
a hexahydrodibenzofuran core structure, with a quaternary
stereogenic center, emerges by employing a chiral reduction
using Corey’s (S)-Me-CBS-oxazaborolidine reagent followed
by a Mitsunobu reaction to set the stereochemistry. A Pd-
mediated intramolecular Heck reaction concludes the tri-
cyclic core structure. Finally, a Pd/C catalyzed reduction
yields the target molecule in 21% overall yield over 6 steps.

Tricyclic benzofurans incorporating an all-carbon asymmetric
quaternary center are featured in many biologically interesting
molecules and have therefore received considerable attention
from the synthetic community, e.g., morphine,'® galantamine’*
and lunarine'? (Fig. 1). These natural products have proven
to be highly potent drugs and are used in several different
therapies.!** Recently, we disclosed a series of selective Estrogen
Receptor B (ERP) agonists based on the tricyclic benzofuran core
structure (Fig. 1). The reported synthesis gave a low yield and the
diastereomers and enantiomers were separated by crystallization
and chiral chromatography, respectively.'* Clearly, to be able to
efficiently establish a structure-activity relationship (SAR) and
to further evaluate these molecules’ biological activity it was
necessary to develop a more efficient enantioselective synthesis.
Compounds bearing these quaternary centers are in general
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Fig. 1 Bioactive molecules containing the tricyclic benzofuran moiety.
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difficult to synthesize on a reasonable scale and have traditionally
been obtained via classical resolution, similar to our original
strategy.>® Recently, however, asymmetric strategies toward these
molecules based on metal catalysis have been reported.’>

A retrosynthetic analysis of the tricyclic benzofuran ring system
as found in 6 identified the enantiomerically pure allylic alcohol 3
as a key intermediate, potentially obtained by an enantioselective
reduction of o,B-unsaturated ketone 2 (Scheme 1). A subsequent
Mitsunobu reaction between phenol 4 and the allylic alcohol 3
would yield ether 5 by an inversion of the stereochemistry at the
allylic carbon. However, the seemingly trivial Mitsunobu reaction
could be a challenge, due to the potential reaction path via a
stabilized cation which would erode the enantiopurity of the
compound. Nevertheless, these steps would set-up the synthesis
for a final ring-closing reaction generating the furan ring. An
intramolecular Mizoroki-Heck reaction would then be efficient
for the formation of the asymmetric congested quaternary center.
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Scheme 1 Retrosynthetic analysis.

The synthesis of the tricyclic benzofurans starts from the o,p-
unsaturated ketone 7 that undergoes a DABCO-catalyzed iodo-
Baylis—Hillman reaction'"® yielding 8 in 82% yield (Scheme 2).
A convenient microwave assisted Pd/C-catalyzed Suzuki reaction
transforms iodo-carbonyl 8 into the aryl ketone 9 in 80% yield."”
This reaction protocol is practical and fast with reaction times
between 15-20 min. In addition, the extractive work-up can readily
be performed in the microwave vial and gives the pure product
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Scheme 2 Synthesis of allylic alcohol 10.%
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well within one hour. The enone 9 was thereafter subjected to an
enantioselective (S)-CBS catalyzed reduction. In order to obtain
optimal enantioselectivity the o, -unsaturated ketone 9 was added
with syringe pump to the reaction mixture at 0 °C yielding
optically active alcohol 10 in an excellent ee of 98% and 83%
yield.?** Alternatively, reduction of 9 using the (R)- enantiomer of
the oxazaborolidine catalyst provided ent-10 in a similar yield.?
In addition, the reaction was chemoselective, hence no formation
of the corresponding saturated products was detected.

The enantioenriched allylic alcohol 10, was then reacted with 2-
iodophenol 11 under Mitsunobu conditions at room temperature
using diethyl azodicarboxylate (DEAD) and triphenyl phosphine
(PPh;) (Scheme 3).** Disappointingly, the reaction facilitated an
erosion of the enantiomeric excess; ether 12 was isolated in 83%
yield and 68% ee. As speculated, the enantio-detrimental outcome
was probably due to a competing cationic reaction path, which has
been observed in Mitsunobu reactions with benzylic and allylic
alcohols.>2® A series of optimization reactions found diisopropyl
azodicarboxylate (DIAD) and PPh; in toluene at 0° C to be the
best reaction conditions. Compound 12 was obtained in 60% yield
and 90% ee.”” A palladium-mediated intramolecular Mizoroki—
Heck coupling using Pd(OAc),, Ag,CO; and PPh; converted ether
12 to the tricyclic benzofuran 13 in excellent yield of 95% and
14:1 dr in preference for the cis-fused ring system.® The relative
stereochemistry was assigned with a NOESY-NMR experiment
(see the ESIT).* Notably, the all-carbon quaternary stereocenter is
formed with a high diastereoselectivity and only traces of double
bond isomers could be found.*’ The double bond isomers will
however have no impact on the purification as the final step is a
reduction. Thus, the double bond and the protecting group were
removed with Pd/C and H, to yield 14 in 67% yield.
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Scheme 3 The synthesis of dihydrobenzofuran 14.

Interestingly, when applying the Mizoroki-Heck reaction con-
ditions to seven-membered rings e.g., compound 15 undergoes cy-
clization but gives 16 in a 1 : 1 diastereomeric mixture (Scheme 4).
This difference in diastereoselectivity as compared to the six-
membered ring may be rationalized with the higher flexibility of
the seven-membered ring.
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Scheme 4 Mizoroki-Heck reaction on the 7-membered ether 15.

Conclusions

In summary, we have developed a practical and fast total synthesis
of compounds containing a tricyclic benzofuran core which are
abundant in many biologically active molecules. The six-step
sequence proceeds in 21% overall yield and high enantioselectivity.
The first asymmetric center is assembled in a highly enantio-
and chemo-selective oxaborolidine reduction of a cyclic o,f-
unsaturated ketone. Moreover, the final tricyclic benzofuran core
is constructed in a highly stereoselective intramolecular Mizoroki—
Heck reaction efficiently giving the all-carbon quaternary
center.
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